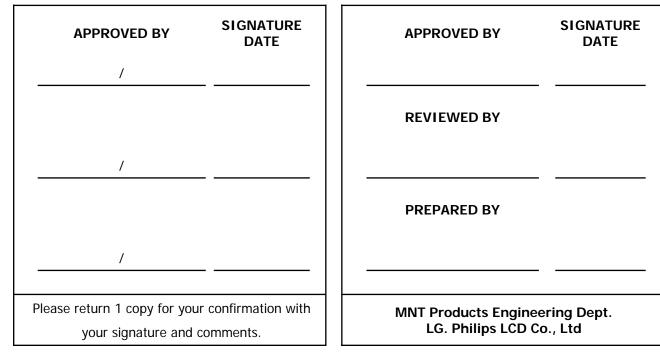


SPECIFICATION FOR APPROVAL

() Preliminary Specification
 (●) Final Specification

Title


24.0" WUXGA TFT LCD

BUYER	HP
MODEL	

SUPPLIER	LG Display Co., Ltd.	
*MODEL	LM240WU4	
SUFFIX	SLA1	

*When you obtain standard approval,

please use the above model name without suffix

LM240WU4 Liquid Crystal Display

Product Specification

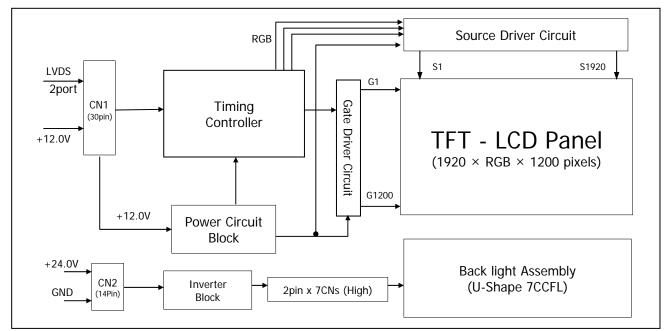
Contents

No	ITEM	Page
	COVER	1
	CONTENTS	2
	RECORD OF REVISIONS	3
1	GENERAL DESCRIPTION	4
2	ABSOLUTE MAXIMUM RATINGS	5
3	ELECTRICAL SPECIFICATIONS	6
3-1	ELECTRICAL CHARACTREISTICS	6
3-2	INTERFACE CONNECTIONS	8
3-3	SIGNAL TIMING SPECIFICATIONS	14
3-4	SIGNAL TIMING WAVEFORMS	15
3-5	COLOR INPUT DATA REFERNECE	16
3-6	POWER SEQUENCE	17
3-7	POWER SEQUENCE FOR INVERTER	18
4	OPTICAL SFECIFICATIONS	19
5	MECHANICAL CHARACTERISTICS	25
6	RELIABLITY	28
7	INTERNATIONAL STANDARDS	29
7-1	SAFETY	29
7-2	EMC	29
8	PACKING	30
8-1	DESIGNATION OF LOT MARK	30
8-2	PACKING FORM	31
8-3	PALLET FORM	32
9	PRECAUTIONS	33

RECORD OF REVISIONS

Revision Date	Page	Description
Oct.19. 2007	-	First Draft(Preliminary)
Dec. 20. 2007	4,6,25	TBD is update
	18	Change the Inverter Power Sequence (T1 Min 1 \rightarrow 20, T2 Min 200 \rightarrow 500)
	19	Change the Min CR (600 \rightarrow 700), Tr/Tf (TBD/TBD \rightarrow 6.0/7.0)
	26,27	Update the Mechanical Drawing (Tilt 1.0→1.4)
		: Inverter Input CNT is moved 4mm inside
Apr. 21. 2008	4	Update the Power Consumption
	7	Update the Inverter Input Current, Power
		Change the Inverter Vbr Min Vlotage (0V \rightarrow 0.3V)
	8	Change the T2 Refer page (page 14 \rightarrow page 17)
	13	Change the Inverter Vbr Min Vlotage (0V \rightarrow 0.3V)
	19	Update the Chromaticity
	26, 27	Updated the Mechanical Drawing
	31	Updated the Packing Form
	Oct.19. 2007 Dec. 20. 2007	Oct. 19. 2007 - Dec. 20. 2007 4,6,25 18 19 26,27 2 Apr. 21. 2008 4 7 - 8 13 19 26,27 20 2 4 19 26,27 - 2 - 4 19 2 - 19 - 2 - 19 - 2 - 2 - 2 - 2 - 2 - 4 13 19 2 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 13 - 2 - 2 - 2 - 3 -

LM240WU4 Liquid Crystal Display


Product Specification

1. General Description

LM240WU4 is a Color Active Matrix Liquid Crystal Display with an integral Cold Cathode Fluorescent Lamp(CCFL) backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally black mode. It has a 24inch diagonally measured active display area with WUXGA resolution (1200 vertical by 1920 horizontal pixel array) Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 8-bit gray scale signal for each dot, thus, presenting a palette of more than 16,7M(True) colors.

It has been designed to apply the 8Bit 2 port LVDS interface.

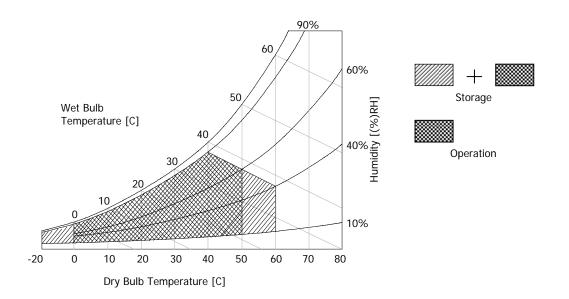
It is intended to support displays where high brightness, super wide viewing angle, high color saturation, and high color are important.

General Features

Ver. 1.0	Apr. 21, 2008	1/31
Surface Treatment	Hard coating(3H), Anti-glare treatment of the front polarizer	
Display Operating Mode	Transmissive mode, normally black	
Weight	2790 g (typ.)	
Power Consumption	Total 71.82 Watt (Typ.) (7.02 Watt @VLCD, 64.8 Watt@VDDB)	
Viewing Angle(CR>10)	View Angle Free (R/L 178(Typ.), U/D 178(Typ.))	
Luminance, White	400 cd/m ² (Center 1 points)	
Color Depth	8-bit, 16,777,216 colors	
Pixel Format	1920 horiz. By 1200 vert. Pixels RGB stripes arrangement	
Pixel Pitch	0.270 mm x 0.270 mm	
Outline Dimension	546.4(H) x 352.0(V) x 40.3(D) mm(Typ.)	
Active Screen Size	24.1 inches(61.32cm) diagonal	

2. Absolute Maximum Ratings

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.


Table 1. ABSOLUTE MAXIMUM RATINGS

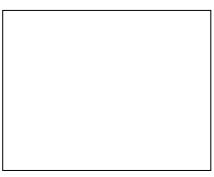
Parameter	Symbol	Valu	ies	Units	Notes	
Falalletei	Symbol	Min	Max	Units	Notes	
Power Input Voltage	VLCD	-0.3	14	Vdc	at 25 \pm 2°C	
Operating Temperature	Тор	0	50	°C		
Storage Temperature	Тѕт	-20	60	°C	1 0	
Operating Ambient Humidity	Нор	10	90	%RH	1, 2	
Storage Humidity	Нѕт	10	90	%RH		

Note : 1. Temperature and relative humidity range are shown in the figure below.

Wet bulb temperature should be 39 °C Max, and no condensation of water.

Note : 2. Maximum Storage Humidity is up to 40 °C, 70% RH only for 4 corner light leakage Mura.

3. Electrical Specifications


3-1. Electrical Characteristics

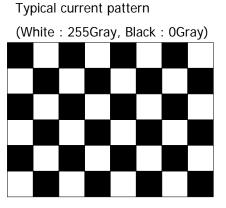
It requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input power for the CCFL, is typically generated by an inverter. The inverter is an external unit to the LCDs.

Parameter	Symbol		Values	Unit	Notes			
Parameter	Symbol	Min	Тур	Max	Unit	Notes		
MODULE :								
Power Supply Input Voltage	VLCD	11.4	12.0	12.6	Vdc			
Permissive Power Input Ripple	Vrf			400	mV _{p-p}	1		
Dower Supply Input Current	ILCD	-	585	673	mA	2		
Power Supply Input Current		-	765	880	mA	3		
Dower Consumption	PLCD TYP	-	7.02	8.07	Watt	2		
Power Consumption	PLCD MAX	-	9.18	10.56	Watt	2		
Rush current	IRUSH	-	-	3.0	А	4		

Note :

- 1. Permissive power ripple should be measured under V_{LCD} =12.0V, 25 ± 2°C,f_V=60Hz condition and At that time, we recommend the bandwidth configuration of oscilloscope is to be under 20Mhz.
- 2. The specified current and power consumption are under the V_{LCD} =12.0V, 25 ± 2°C,f_v=60Hz condition whereas mosaic pattern(8 x 6) is displayed and f_v is the frame frequency.
- 3. The current is specified at the maximum current pattern.
- 4. The duration of rush current is about 2ms and rising time of power Input is 1ms(min.).

White Pattern


Black Pattern

< Permissive Power Input Ripple (V_{LCD} =12.0V, 25 ± 2°C, f_V =60Hz) >

LM240WU4 Liquid Crystal Display

Product Specification

Mosaic Pattern(8 x 6)

Maximum current pattern

White Pattern

< Power consumption (V_{LCD} =12.0V, 25 ± 2°C, f_V =60Hz) >

Table 2-2. INVERTER ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Condition		Values	Unit	Notes	
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	Notes
Inverter :							
Input Voltage	V _{DDB}		22	24.0	26	V	1
Input Current	I _{DDB}	$V_{BR} = 3.3V$	-	2.7	3.2	А	2
Input Power	P _B	$V_{BR} = 3.3V$	-	64.8	84.5	Watt	2
B/L on/off control	V _{ON/OFF}	Lamp ON = High	2.0	-	5.0	V	
		Lamp OFF =Low	0.0	-	0.8	V	
Brightness Adj	V _{BR}		0.3	-	3.3	V	3
LAMP :							
Life time			40,000			Hrs	4

Notes :

- 1. The input voltage ripple is limited below 400mVp-p.
- 2. The specified current and power consumption are under the typical supply Input voltage, 24V.
- 3. Dimming Start voltage will be set at $3.2V \pm 3\%(0.096V)$ considering IC and components deviation.
- 4. The life is determined as the time at which luminance of the lamp is 50% compared to that of initial value at the typical lamp current on condition of continuous operating at $25 \pm 2^{\circ}$ C.
- 5. Electrical characteristics are determined after the unit has been 'ON' and stable for approximately 30min in a dark environment at 25 °C \pm 2°C.
- 6. In case of the difference in measured values due to the difference of measuring device was found, correlated value will be used after discussions between both parties.

Apr. 21.2008

3-2. Interface Connections

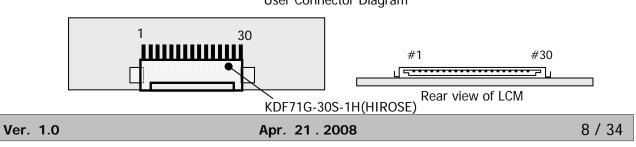
3-2-1. LCD Module

-LCD Connector(CN1). : KDF71G-30S-1H (Manufactured by HIROSE) or Equivalent ISL100-L30B-C23(UJU), GT103-30S-H23 (LS cable)

- Mating Connector : FI-XC30C2L (Manufactured by JAE) or Equivalent

Table 3 MODULE CONNECTOR(CN1) PIN CONFIGURATION

No	Symbol	Description	No	Symbol	Description
1	FROM	Minus signal of odd channel 0 (LVDS)	16	SR1P	Plus signal of even channel 1 (LVDS)
2	FROP	Plus signal of odd channel 0 (LVDS)	17	GND	Ground
3	FR1M	Minus signal of odd channel 1 (LVDS)	18	SR2M	Minus signal of even channel 2 (LVDS)
4	FR1P	Plus signal of odd channel 1 (LVDS)	19	SR2P	Plus signal of even channel 2 (LVDS)
5	FR2M	Minus signal of odd channel 2 (LVDS)	20	SCLKINM	Minus signal of even clock channel (LVDS)
6	FR2P	Plus signal of odd channel 2 (LVDS)	21	SCLKINP	Plus signal of even clock channel (LVDS)
7	GND	Ground	22	SR3M	Minus signal of even channel 3 (LVDS)
8	FCLKINM	Minus signal of odd clock channel (LVDS)	23	SR3P	Plus signal of even channel 3 (LVDS)
9	FCLKINP	Plus signal of odd clock channel (LVDS)	24	GND	Ground
10	FR3M	Minus signal of odd channel 3 (LVDS)	25	OPEN	NC
11	FR3P	Plus signal of odd channel 3 (LVDS)	26	OPEN	NC
12	SROM	Minus signal of even channel 0 (LVDS)	27	DCR_OUT	Dynamic C/R output
13	SROP	Plus signal of even channel 0 (LVDS)	28	ODC on/off	ODC_ON_OFF_Control [* note 4] L : ODC_ON , H : ODC_OFF Default : ODC_ON (No connection)
14	GND	Ground	29	VLCD	Power Supply +12.0V
15	SR1M	Minus signal of even channel 1 (LVDS)	30	VLCD	Power Supply +12.0V


Note: 1. All GND(ground) pins should be connected together and to Vss which should also be connected to the LCD's metal frame.

2. All VLCD (power input) pins should be connected together.

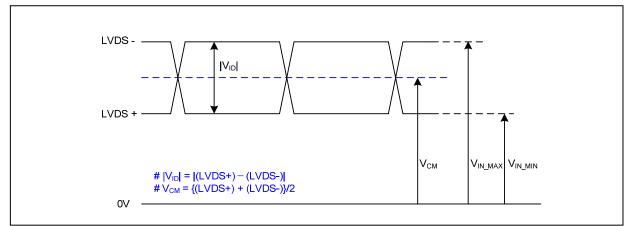
3. Input Level of LVDS signal is based on the IEA 664 Standard.

4. In ODC off Case , When Power Start up, Sequence must keep as : VLCD > T2 > ODC_OFF ('H') * T2 : Time interval between VLCD and RGB data, refer to page 17.

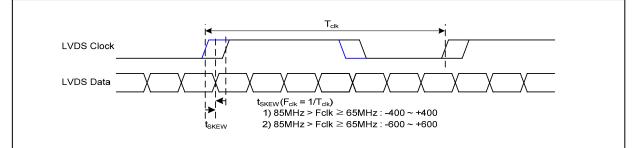
User Connector Diagram

Table 4. REQUIRED SIGNAL ASSIGNMENT FOR Flat Link (TI:SN75LVDS83) Transmitter

Pin #	Pin Name	Require Signal	Pin #	Pin Name	Require Signal
1	Vcc	Power Supply for TTL Input	29	GND	Ground pin for TTL
2	D5	TTL Input (R7)	30	D26	TTL Input (DE)
3	D6	TTL Input (R5)	31	T _X CLKIN	TTL Level clock Input
4	D7	TTL Input (G0)	32	PWR DWN	Power Down Input
5	GND	Ground pin for TTL	33	PLL GND	Ground pin for PLL
6	D8	TTL Input (G1)	34	PLL Vcc	Power Supply for PLL
7	D9	TTL Input (G2)	35	PLL GND	Ground pin for PLL
8	D10	TTL Input (G6)	36	LVDS GND	Ground pin for LVDS
9	Vcc	Power Supply for TTL Input	37	TxOUT3+	Positive LVDS differential data output 3
10	D11	TTL Input (G7)	38	TxOUT3 –	Negative LVDS differential data output 3
11	D12	TTL Input (G3)	39	T _X CLKOUT +	Positive LVDS differential clock output
12	D13	TTL Input (G4)	40	T _X CLKOUT –	Negative LVDS differential clock output
13	GND	Ground pin for TTL	41	T _X OUT2+	Positive LVDS differential data output 2
14	D14	TTL Input (G5)	42	T _X OUT2-	Negative LVDS differential data output 2
15	D15	TTL Input (B0)	43	LVDS GND	Ground pin for LVDS
16	D16	TTL Input (B6)	44	LVDS Vcc	Power Supply for LVDS
17	Vcc	Power Supply for TTL Input	45	T _X OUT1+	Positive LVDS differential data output 1
18	D17	TTL Input (B7)	46	T _X OUT1 –	Negative LVDS differential data output 1
19	D18	TTL Input (B1)	47	T _X OUT0+	Positive LVDS differential data output 0
20	D19	TTL Input (B2)	48	T _X OUT0-	Negative LVDS differential data output 0
21	GND	Ground pin for TTL Input	49	LVDS GND	Ground pin for LVDS
22	D20	TTL Input (B3)	50	D27	TTL Input (R6)
23	D21	TTL Input (B4)	51	D0	TTL Input (R0)
24	D22	TTL Input (B5)	52	D1	TTL Input (R1)
25	D23	TTL Input (RSVD)	53	GND	Ground pin for TTL
26	Vcc	Power Supply for TTL Input	54	D2	TTL Input (R2)
27	D24	TTL Input (HSYNC)	55	D3	TTL Input (R3)
28	D25	TTL Input (VSYNC)	56	D4	TTL Input (R4)

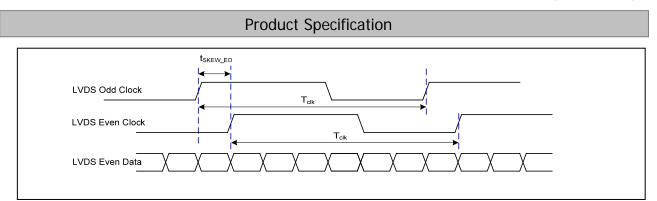

Notes : Refer to LVDS Transmitter Data Sheet for detail descriptions.

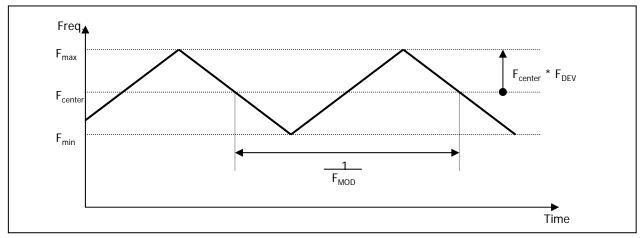
```
Ver. 1.0
```



LVDS Input characteristics

1. DC Specification

Description	Symbol	Min	Max	Unit	Notes
LVDS Differential Voltage	$ V_{ID} $	100	600	mV	-
LVDS Common mode Voltage	V _{CM}	0.6	1.8	V	-
LVDS Input Voltage Range	V _{IN}	0.3	2.1	V	-


2. AC Specification


Description	Symbol	Min	Мах	Unit	Notes
LVDS Clock to Data Skow Margin	t _{skew}	- 400	+ 400	ps	$85MHz > Fclk \ge 65MHz$
LVDS Clock to Data Skew Margin	t _{skew}	- 600	+ 600	ps	$65MHz > Fclk \ge 25MHz$
LVDS Clock to Clock Skew Margin (Even to Odd)	t _{skew_eo}	- 1/7	+ 1/7	T _{clk}	-
Maximum deviation of input clock frequency during SSC	F _{DEV}	-	± 3	%	-
Maximum modulation frequency of input clock during SSC	F _{MOD}	-	200	KHz	-

Ver. 1.0	Apr. 21.2008	10 / 34

LM240WU4 Liquid Crystal Display

< Clock skew margin between channel >

3. Data Format

< Spread Spectrum >

1) LVDS 2 Port

			<──			Tclk				ł								
RCLK +			•		<u>< * 4/7</u> Tclk * 1/	7	-	Fclk * 3/	7►						[MSB	R7	
RXin00 +/-	OR3	OR2	OR1	OR0	060	OR5	OR4	OR3	OR2	OR1		060	OR5	OR4			R6 R5	
RXin01 +/-	OG4	OG3	062	OG1	ОВ1	ОВО	065	0G4	063	0G2	OG1	OB1	ОВО	OG5			R4	
RXinO2 +/-	OB5	OB4	OB3	OB2	DE	VSYNC	HSYNC	OB5	OB4	ОВЗ	OB2	DE	VSYNC	HSYNC			R3 R2	
RXinO3 +/-	OG7	066	OR7	OR6	×	ОВ7	OB6	OG7	066	OR7	OR6	×	OB7	OB6	г	LSB	R1 R0	
RXinE0 +/-	ER3	ER2	ER1	ERO	EG0	ER5	ER4	ER3	ER2	ER1	ERO	EG0	ER5	ER4	L		D = 1st	Dive
RXinE1 +/-	EG4	EG3	EG2	EG1	EB1	EB0	EG5	EG4	EG3	EG2	EG1	EB1	EBO	EG5			N = 2nd	
RXinE2 +/-	EB5	EB4	ЕВЗ	EB2	DE	VSYNC	HSYNC	EB5	EB4	EB3	EB2	DE	VSYNC	HSYNC				
RXinE3 +/-	EG7	EG6	ER7	ER6	×	EB7	EB6	EG7	EG6	ER7	ER6	×	EB7	EB6				

< LVDS Data Format >

Apr. 21.2008

LM240WU4 Liquid Crystal Display

Product Specification

2) LVDS 1 Port

RCLK+		
RA+/-	R3 R2 R1 R0	C0 R5 R4 R3 R2 R1 R0 C0 R5 R4
RB+/-	G4 G3 G2 GI	BI BO C5 G4 G3 G2 G1 BI BO G5
RC+/-	B5 B4 B3 B2	DE VSYNCHSYNC B5 B4 B3 B2 DE VSYNCHSYNC
RD+/-	G7 G6 R7 R6	X B7 B6 G7 G6 R7 R6 X B7 B6
	——Previous (N-1)th Cycle ——	Current (Nth) Cycle —————————Next (N+1)th Cycle ——

Product Specification

3-2-2. Backlight Interface

-Inverter Connector : S14B-PHA-SM3 Side entry type (Manufactured by JST) or Equivalent

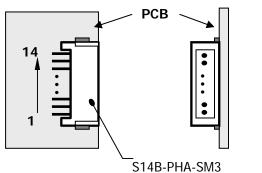

- Mating Connector : PHR-14(Manufactured by JST) or Equivalent

Table 4.	INVERTER CONNECTOR PIN CONFIGULATION	
----------	--------------------------------------	--

Pin No	Symbol	Description	Remarks
1	VBL	Power Supply +24.0V	
2	VBL	Power Supply +24.0V	
3	VBL	Power Supply +24.0V	
4	VBL	Power Supply +24.0V	
5	VBL	Power Supply +24.0V	
6	GND	Power Ground	
7	GND	Power Ground	
8	GND	Power Ground	Note 1
9	GND	Power Ground	
10	GND	Power Ground	
11	OPEN	NC	
12	Von	Backlight On/off Signal	(On :2.0V~5V/Off :0.0~0.8V)
13	Vbr	Brightness Adjustable Voltage	(Max :3.3V / Min :0.3V)
14	OPEN	NC	

Notes: 1. GND is connected to the LCD's metal frame.

Rear view of LCM

(JST : Japan Solderless Terminal Co.,Ltd.)

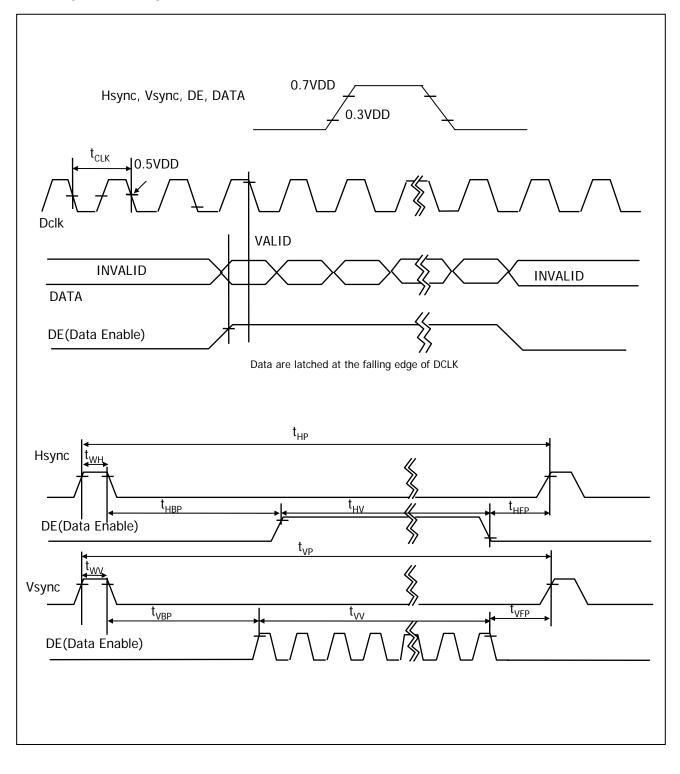
Apr. 21.2008

3-3. Signal Timing Specifications

This is signal timing required at the input of the TMDS transmitter. All of the interface signal timing should be satisfied with the following specifications for it's proper operation.

	ITEM	SYMBOL	Min	Тур	Мах	Unit	Note
	Period	tськ	12.82	12.98	13.16	ns	Pixel frequency
DCLK	Frequency	fclk	76	77	78	MHz	: Typ. 154MHz
	Period	thp	1036	1040	1044		
Hsync Width-Active		twн	16	16	16	tс∟к	
	Period	tvp	1233	1235	1237	thp	
Vsync	Frequency	fv	58.85	59.95	61	Hz	
	Width-Active	twv	6	6	6	thp	
	Horizontal Valid	tHV	960	960	960		
	Horizontal Back Porch	tнвр	36	40	44	tськ	
	Horizontal Front Porch	thfp	20	24	28		
Data	Horizontal Blank	-	76	80	84		twh+ thbp+ thfp
Enable	Vertical Valid	tvv	1200	1200	1200		
	Vertical Back Porch	tvвр	25	26	27		
	Vertical Front Porch	tvfp	2	3	4	thp	
	Vertical Blank	-	33	35	37		twv+ tvbp+ tvfp

Table 5. TIMING TABLE (VESA COORDINATED VIDEO TIMING)


Note: Hsync period and Hsync width-active should be even number times of tCLK. If the value is odd number times of tCLK, display control signal can be asynchronous. In order to operate this LCM a Hsync, Vsyn, and DE(data enable) signals should be used.

- 1. The performance of the electro-optical characteristics may be influenced by variance of the vertical refresh rates.
- 2. Vsync and Hsync should be keep the above specification.
- 3. Hsync Period, Hsync Width, and Horizontal Back Porch should be any times of character number(8).
- 4. The polarity of Hsync, Vsync is not restricted.

Apr. 21.2008

3-4. Signal Timing Waveforms

Ver. 1.0

Apr. 21.2008

3-5. Color Input Data Reference

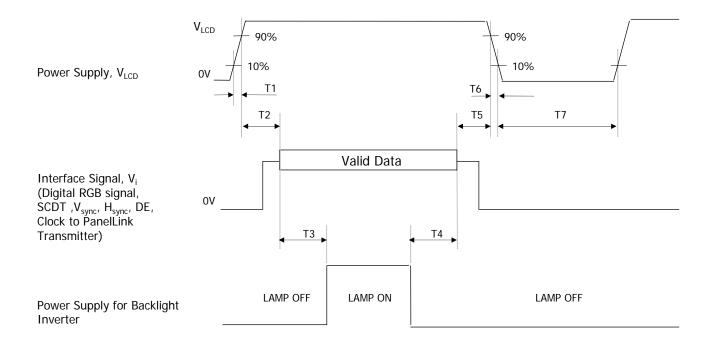

The Brightness of each primary color(red,green,blue) is based on the 8-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

Table 6. COLOR DATA REFERENCE

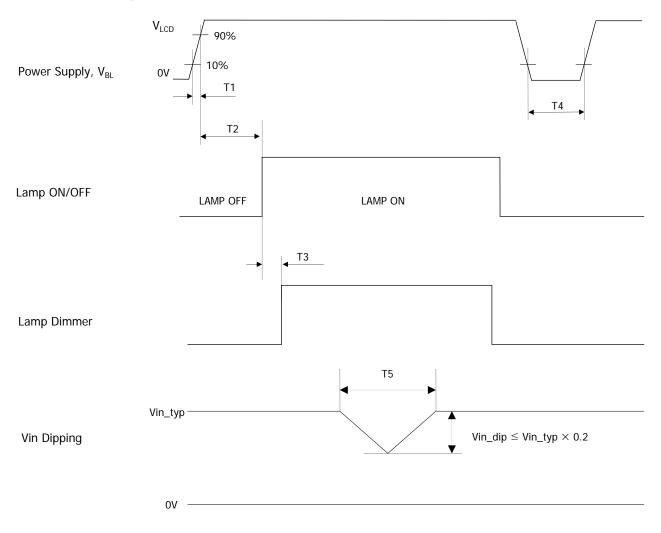
													Inpu	ut Co	olor	Dat	а									
	Color					RE	Đ							GR	EEN							BL	UE			
			MS								MS								MS							.SB
									R1	R0								G0								B0
	Black		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (255)		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (255)		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue (255)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Color	Cyan		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED (000)	Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (001)		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RED																										
	RED (254)		1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (255)		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (000)	Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (001)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
GREEN																										
	GREEN (254)		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	GREEN (255)		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	BLUE (000)	Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE (001)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
BLUE																										
	BLUE (254)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	BLUE (255)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

3-6. Power Sequence

Table 7. POWER SEQUENCE

Dorometer		Unito		
Parameter	Min	Тур	Мах	Units
T1	0.5	-	10	ms
Т2	0.01	-	50	ms
Т3	500	-	-	ms
Τ4	200	-	-	ms
Т5	0.01	-	50	ms
Τ7	500		-	ms

Notes: 1. Please avoid floating state of interface signal at invalid period.


2. When the interface signal is invalid, be sure to pull down the power supply for LCD V_{LCD} to 0V.

3. Lamp power must be turn on after power supply for LCD and interface signal are valid.

Ver.	1.0

3-7. Power Sequence for Inverter

Table 8. POWER SEQUENCE

Deremeter		Linito			
Parameter	Min	Тур	Мах	Units	
T1	20	-		ms	
T2	500	-	-	ms	
Т3	-	-	50	ms	
Τ4	500	-	-	ms	
Т5	-	-	10	ms	

Ver. 1.0	Apr. 21.2008	18 / 34

4. Optical Specifications

Optical characteristics are determined after the unit has been 'ON' for approximately 30 minutes in a dark environment at $25\pm2^{\circ}$ C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and θ equal to 0 ° and aperture 1 degree.

FIG. 1 presents additional information concerning the measurement equipment and method.

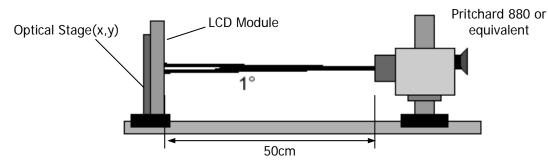


FIG. 1 Optical Characteristic Measurement Equipment and Method

 $(Ta=25 \text{ °C}, V_{LCD}=12.0V, f_{V}=60Hz \text{ Dclk}=154MHz, V_{BR}=3.3V)$

Parameter					Values			
		Symbol	Min	Тур	Max	Units	Notes	
Contrast Ratio		CR	700	1000			1	
Surface Lur	ninance, v	white	L _{WH}	320	400		cd/m ²	2
Luminance	Variation		δ _{WHITE}	75			%	3
		Rise Time	Tr _R	-	6.0	12	ms	4
Response T	imo	Decay Time	Tr _D	-	7.0	12	ms	4
Response i	IIIIe	Cray to Cray	T _{GTG_AVR}	-	5	-	ms	5
		Gray to Gray	T _{GTG_MAX}	-	-	12	ms	5
		RED	Rx		0.680			
			Ry]	0.310			
		GREEN	Gx]	0.206			
Color Coord	linates		Gy	Тур	0.693	Тур +0.03		
[CIE1931]		BLUE	Bx	-0.03	0.151			
			Ву		0.055			
		WHITE	Wx]	0.313			
			Wy		0.329			
Color Shift		Horizontal	$\theta_{\text{CST}_{\text{H}}}$	-	178	-	Dograa	6
		Vertical	θ_{CST_V}	-	178	-	Degree	0
Viewing Ang	gle (CR>1	0)						
Conorol	Horizo	ntal	θ _H	170	178	-	Degree	7
General	Vertica	I	θγ	170	178	-	Degree	7
Effortivo	Horizon	ital	$\theta_{\text{GMA}_{\text{H}}}$		178	-	Degree	0
Effective	Vertical		$\theta_{GMA_{V}}$		178	-	Degree	8
Gray Scale	-				2.2			9

Ver. 1.0

LM240WU4 Liquid Crystal Display

Product Specification

Notes 1. Contrast Ratio(CR) is defined mathematically as :

 $Contrast Ratio = \frac{Surface Luminance with all white pixels}{Surface Luminance with all black pixels}$

It is measured at center point(Location P1)

- 2. Surface luminance(LwH) is luminance value at 5 points average across the LCD surface 50cm from the surface with all pixels displaying white. For more information see FIG 2. $L_{WH} = = Average[L_{on}1, L_{on}2, L_{on}3, L_{on}4, L_{on}5]$
- 3. The variation in surface luminance , δ WHITE is defined as :

$$\delta_{WHITE} = \frac{\text{Minimum}(L_{P1}, L_{P2}, \dots, L_{P9})}{\text{Maximum}(L_{P1}, L_{P2}, \dots, L_{P9})} \times 100$$

Where L1 to L9 are the luminance with all pixels displaying white at 9 locations. For more information see FIG 2.

- 4. Response time is the time required for the display to transition from black to white (Rise Time, Tr_R) and from white to black (Decay Time, Tr_D). For additional information see FIG 3.
- 5. Gray to gray response time is the time required for the display to transition from gray to gray. For additional information see Table 10.
- 6. Color shift is the angle at which the color difference is lower than 0.04.
 - For more information see FIG 4.
 - Color difference ($\Delta u'v'$)

$$u' = \frac{4x}{-2x + 12y + 3} \qquad v' = \frac{9y}{-2x + 12y + 3}$$

$$\Delta u'v' = \sqrt{(u'_1 - u'_2)^2 + (v'_1 - v'_2)^2} \qquad u'1, v'1 : u'v' \text{ value at viewing angle direction} u'2, v'2 : u'v' \text{ value at front } (\Theta = 0)$$

- Pattern size : 25% Box size
- Viewing angle direction of color shift : Horizontal, Vertical
- 7. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 5.
- 8. Effective viewing angle is the angle at which the gamma shift of gray scale is lower than 0.3. For more information see FIG 6 and FIG 7.
- 9. Gray scale specification Gamma Value is approximately 2.2. For more information see Table 11.

Н > H/2 H/10 4 \leftrightarrow V/2 P2 Ρ3 Ρ4 > P6 P5 P1 H : 518.4 mm P8 P9 Ρ7 V: 324.0 mm

Measuring point for surface luminance & measuring point for luminance variation.

FIG. 2 Measure Point for Luminance

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".

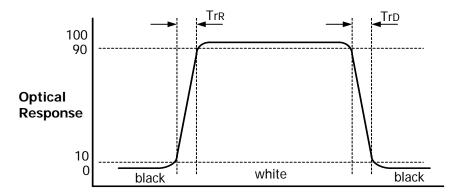


FIG. 3 Response Time

Ver.	1.0

Apr. 21.2008

The gray to gray response time is defined as the following figure and shall be measured by switching the input signal for "Gray To Gray".

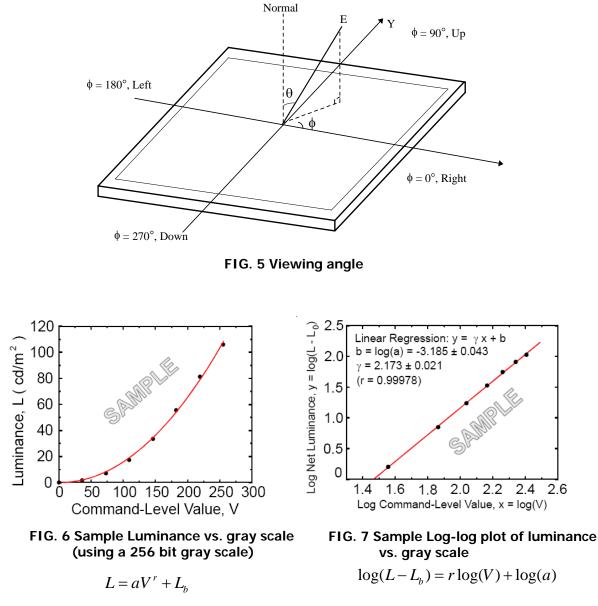
- Gray step : 5 step
- TGTG_AVR is the total average time at rising time and falling time for "Gray To Gray".
- TGTG_MAX is the max time at rising time or falling time for "Gray To Gray".

Table 10. Gray to gray response time table

Cray to Cray		Rising Time						
Gray to Gray	G255	G191	G127	G63	G0			
Falling Time	G255							
	G191							
	G127							
	G63							
	GO							

Color shift is defined as the following test pattern and color.

25% Box size


FIG. 4 Color Shift Test Pattern

Average RGB values in Bruce RGB for Macbeth Chart

	Dark skin	Light skin	Blue sky	Foliage	Blue flower	Bluish green
R	98	206	85	77	129	114
G	56	142	112	102	118	199
В	45	123	161	46	185	178
	Orange	Purplish blue	Moderate red	Purple	Yellow green	Orange yellow
R	219	56	211	76	160	230
G	104	69	67	39	193	162
В	24	174	87	86	58	29
	Blue	Green	Red	Yellow	Magenta	Cyan
R	26	72	197	241	207	35
G	32	148	27	212	62	126
В	145	65	37	36	151	172
	White	Neutral 8	Neutral 6.5	Neutral 5	Neutral 3.5	Black
R	240	206	155	110	63	22
G	240	206	155	110	63	22
В	240	206	155	110	63	22
Ve	er. 1.0		Apr. 21.	2008		22 / 34

Dimension of viewing angle range.

Here the Parameter α and γ relate the signal level V to the luminance L. The GAMMA we calculate from the log-log representation (FIG. 7)

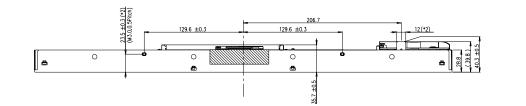
Table 11. Gray Scale Specification

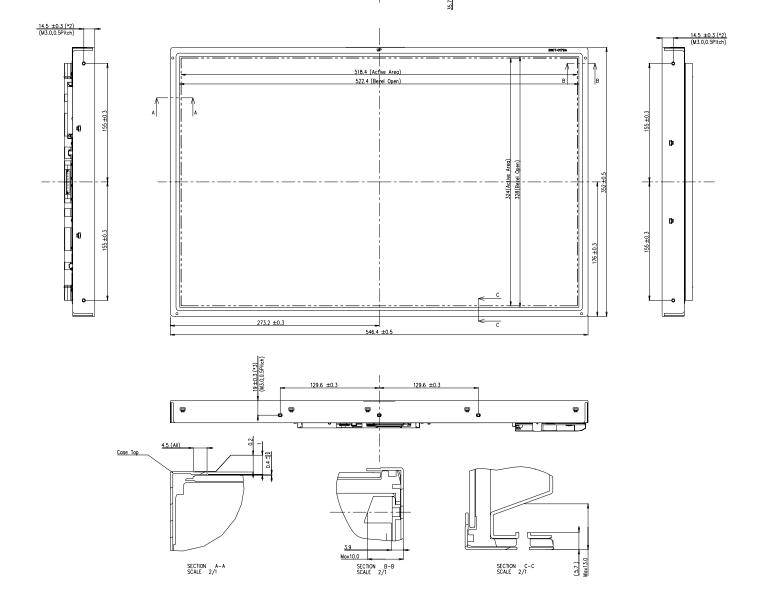
Gray Level	Relative Luminance [%] (Typ.)
0	0.13
31	1.2
63	4.7
95	11.7
127	21.2
159	35.2
191	53.0
223	75.4
255	100

5. Mechanical Characteristics

The contents provide general mechanical characteristics. In addition the figures in the next page are detailed mechanical drawing of the LCD.

	Horizontal	546.4mm			
Outline Dimension	Vertical	352.0mm			
	Depth	40.3mm			
Densil Area	Horizontal	522.4mm			
Bezel Area	Vertical	328.0mm			
Active Display Area	Horizontal	518.4mm			
Active Display Area	Vertical	324.0mm			
Weight	2790 g(Typ) / 2930 g(Max)				
Surface Treatment	Hard coating(3H) Anti-glare treatment of the front polarizer				


Notes : Please refer to a mechanic drawing in terms of tolerance at the next page.

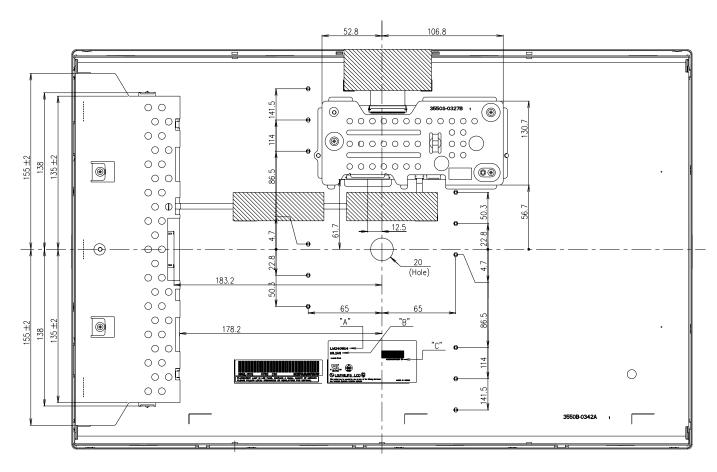


LM240WU4 Liquid Crystal Display

Product Specification

<FRONT VIEW>

Ver. 1.0


Apr. 21.2008

LM240WU4 Liquid Crystal Display

Product Specification

<REAR VIEW>

- Notes
- 1. Unspecified tolerances are to be $\pm 0.5 \text{mm}.$
- 2. Depth of user mounting holes is max 5.0mm
- Tilt and partial disposition tolerance of display area are as following.

4. Torque Spec of User Mounting : 6.0 \sim 7.0kgf cm

6. Reliability

Environment test condition

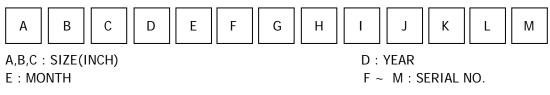
No	Test Item	Condition				
1	High temperature storage test	Ta= 60°C 240h				
2	Low temperature storage test	Ta= -20°C 240h				
3	High temperature operation test	Ta= 50°C 50%RH 240h				
4	Low temperature operation test	Ta= 0°C 240h				
5	Vibration test (non-operating)	Wave form : random Vibration level : 1.0G RMS Bandwidth : 10-300Hz Duration : X,Y,Z, 10 min One time each direction				
6	Shock test (non-operating)	Shock level : 100G Waveform : half sine wave, 2ms Direction : $\pm X$, $\pm Y$, $\pm Z$ One time each direction				
7	Humidity condition Operation	Ta= 40 °C ,90%RH				
8	Altitude storage / shipment	0 - 40,000 feet(12192m)				

7. International Standards

7-1. Safety

- a) UL 60950-1:2003, First Edition, Underwriters Laboratories, Inc., Standard for Safety of Information Technology Equipment.
- b) CAN/CSA C22.2, No. 60950-1-03 1st Ed. April 1, 2003, Canadian Standards Association, Standard for Safety of Information Technology Equipment.
- c) EN 60950-1:2001, First Edition, European Committee for Electrotechnical Standardization(CENELEC) European Standard for Safety of Information Technology Equipment.

7-2. EMC


- a) ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHZ to 40GHz. "American National Standards Institute(ANSI), 1992
- b) C.I.S.P.R "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." International Special Committee on Radio Interference.
- c) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." European Committee for Electrotechnical Standardization. (CENELEC), 1998 (Including A1: 2000)

Product Specification

8. Packing

8-1. Designation of Lot Mark

a) Lot Mark

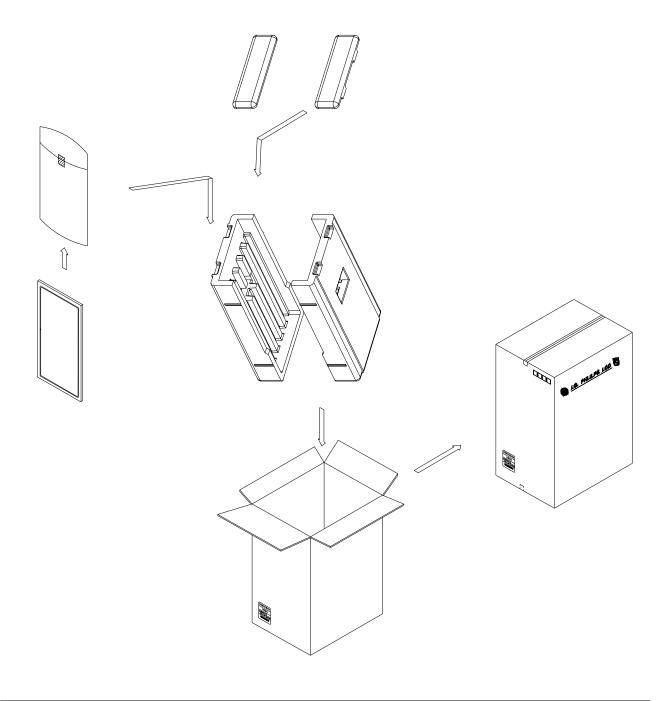
Note

1. YEAR

Year	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Mark	1	2	3	4	5	6	7	8	9	0

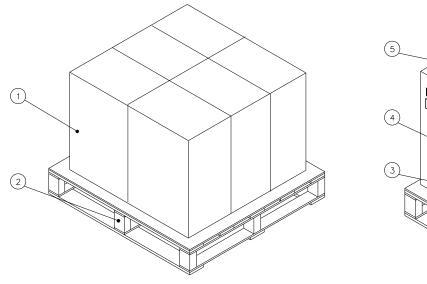
2. MONTH

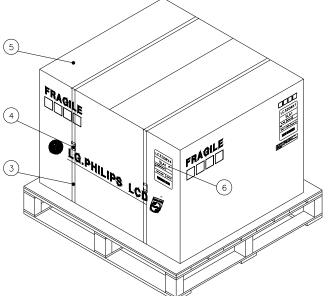
Month	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mark	1	2	3	4	5	6	7	8	9	А	В	С


b) Location of Lot Mark

Serial No. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice.

8-2. Packing Form


- a) Package quantity in one box : 5EA
- b) Box Size : 436 X 346 X 628



Apr. 21.2008

8-3. Pallet Form

NO.	DESCRIPTION	MATERIAL
1	PACKING ASS'Y	
2	PALLET	Paper_1030X870X130
3	ANGLE, PACKING	SWR4
4	LABEL	YUPO PAPER
5	TAPE	OPP
6	BAND	РР
7	BAND, CLIP	CLIP 18MM

Ver. 1.0

Apr. 21.2008

9. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

9-1. MOUNTING PRECAUTIONS

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth. (Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

9-2. OPERATING PRECAUTIONS

- (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage : $V=\pm 200 \text{mV}(\text{Over and under shoot voltage})$
- (2) Response time depends on the temperature.(In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer.
- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.
- (7) Please do not give any mechanical and/or acoustical impact to LCM. Otherwise, LCM can't be operated its full characteristics perfectly.
- (8) A screw which is fastened up the steels should be a machine screw.
- (if not, it causes metallic foreign material and deal LCM a fatal blow)
- (9) Please do not set LCD on its edge.

Ver. 1.0

Apr. 21.2008

9-3. ELECTROSTATIC DISCHARGE CONTROL

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4. PRECAUTIONS FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

9-5. STORAGE

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.

9-6. HANDLING PRECAUTIONS FOR PROTECTION FILM

- (1) The protection film is attached to the bezel with a small masking tape. When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ionblown equipment or in such a condition, etc.
- (2) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the bezel after the protection film is peeled off.
- (3) You can remove the glue easily. When the glue remains on the bezel surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.